Return to search

ADVANCING PRACTICAL NONAQUEOUS REDOX FLOW BATTERIES: A COMPREHENSIVE STUDY ON ORGANIC REDOX-ACTIVE MATERIALS

<p dir="ltr">As the demand for energy rises and the threat of climate change looms, the need for clean, reliable, and affordable energy solutions like renewable energies has been more crucial. Energy storage systems (ESSs) are indispensable in addressing the intermittent nature of renewable energies and optimizing grid efficiency. Redox flow batteries (RFBs), thanks to their scalability, independent energy and power, swift response time, and minimal environmental impact, are a particularly promising ESS technology for long-duration storage applications. Despite the technological maturity of aqueous RFBs, nonaqueous organic RFBs (NAORFBs) are a prospective solution due to their wider operational voltage, potentially higher energy density, and larger pool of redox-active materials. However, the current state-of-the-art NAORFBs face challenges due to the lack of suitable organic redox-active materials (ORMs).</p><p dir="ltr">Despite the development of new materials, how their variables influence the total system cost of RFBs remains an unsolved challenge. With this regard, we established a techno-economic (TE) model to calculate the capital cost of nonaqueous hybrid RFBs (NAHRFBs). Prior to this work, NAHRFBs, which employs lithium metal as the anode, were regarded as an RFB system with the highest energy density. However, the correlation between their features and the system cost remained unclear, leaving a research gap for new ORMs. In our model, we selected a state-of-the-art NAHRFB system where 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) serves as the catholyte and lithium metal functions as the anode. Thereafter, sensitivity analyses identified several key factors that determine the system cost, including operational current density, area-specific resistance, cell voltage, electrolyte composition, and both the price and equivalent molecular weight of the ORM. To enhance the cost-competitiveness of current NAHRFBs, it is advised to increase the current density by 10 times and modulate the ORM-related characteristics. The virtually optimized condition manifests that the system cost of NAHRFB can meet the long-term cost target set by the U. S. Department of Energy.</p><p dir="ltr">Informed by the TE model, we discovered that elevating the oxidation potential of catholyte ORMs is instrumental in reducing the system cost of RFBs. To explore this possibility, we incorporated fluorine atoms, a potent electron-withdrawing group (EWG), into a dimethoxybenzene (DMB) derivative, yielding a new ORM (ANL-C46) with an oxidation potential enhanced by ~0.41 V. Surprisingly, ANL-C46 demonstrated superior kinetic and electrochemical stability compared to its parent molecule, as indicated by electron paramagnetic resonance (EPR) study and bulk electrolysis. In particular, the cycling performance of ANL-46 during the bulk electrolysis outperformed most reported high-potential (> 1 V vs. Ag/Ag<sup>+</sup>) ORMs. Density functional theory (DFT) calculations reveals that the introduced fluorine substituents suppress the typical side reaction pathways of the DMB series. These findings offer valuable insights into molecular engineering strategies that concurrently improve multiple desired ORM properties.</p><p dir="ltr">The stability of ORMs is critical for ensuring the extended lifetime of RFBs. We conducted a systematic exploration of the conjugation effect, which potentially stabilizes the ORMs by facilitating a more homogeneous distribution of delocalized charges. This was applied to tailor the electrochemical and physical properties of several DMB derivatives with varying aromatic ring counts. As we extended the aromatic core from 1,4-dimethoxybenzene (1,4-DMB) to 1,4-dimethoxynaphthalene (1,4-DMN), we noted a decrease in oxidation potential, enhanced kinetic stability, and an extended cycling life. However, further extending the aromatic core to 2-ethyl-9,10-dimethyanthracene (EDMA) results in rapid dealkylation of the radical cation due to increased strain in the methoxy substituents. Additionally, 1,4-DMN shows cross-reactions between radical cations, likely via disproportionation. This study demonstrates that extending the π-conjugation changes reactivity in multiple ways. Therefore, attempts to lower oxidation potential and improve ORMs stability through π-conjugation should be pursued with caution.</p>

  1. 10.25394/pgs.24171801.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/24171801
Date25 September 2023
CreatorsZhiguang Li (17015934)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/ADVANCING_PRACTICAL_NONAQUEOUS_REDOX_FLOW_BATTERIES_A_COMPREHENSIVE_STUDY_ON_ORGANIC_REDOX-ACTIVE_MATERIALS/24171801

Page generated in 0.0019 seconds