Return to search

Energy efficiency strategies for residential buildings in a subarctic climate: Impacts on energy use and indoor thermal climate

Adopting energy efficiency strategies in residential buildings are beneficial as these not only improve the energy performance but also improves the indoor thermal climate and minimizes the greenhouse gas emissions. There exist numerous studies on energy efficiency strategies and their influence on indoor thermal climate in residential buildings in cold climates. However, there is a lack of documented and systematic studies that explicitly investigated the selection of appropriate energy efficiency strategies and their impact on the indoor thermal climate in residential buildings in a subarctic climate. Moreover, the impact of such energy efficiency strategies on the life cycle energy use of buildings has not been given appropriate attention in the existing literature. Due to the extreme climate conditions in a subarctic climate – severe cold and dark winter with heavy snow and mild short summer – buildings require a considerable amount of heating energy to maintain a comfortable temperature indoors. Therefore, it is important to adopt energy efficiency strategies that can help obtain operational and life cycle energy savings along with a better indoor thermal climate. The aim of this study is to evaluate the impact of different energy efficiency strategies on energy use and thermal indoor climate of three selected case study residential buildings in a subarctic climate. Three research questions were formulated: (1) What is the impact of evaluated energy‐efficiency strategies on the operational energy use?, (2) What is the impact of evaluated energy‐efficiency strategies on the life‐cycle energy use?, and (3) What is the impact of evaluated energy‐efficiency strategies on the thermal indoor climate? To address research questions 1 and 3, implemented energy‐efficiency strategies in two low‐energy buildings were evaluated using measured energy data and dynamic building energy and indoor climate simulations. To address research question 2, different combinations of energy efficiency strategies were explored using a multiobjective optimization method to identify optimal retrofitting solutions in terms of life cycle energy savings for a 1980s building. Results show that besides an airtight and highly insulated building envelope, a well‐functioning heating system is important to achieve low operational energy use. Findings highlight that the role of occupants is vital both in regard to the proper functioning of the heating system and to reduce the need for active heating in an airtight and highly insulated building. The occupants are also important in terms of maintaining a comfortable indoor thermal climate, especially during summer since manual airing and shading can help moderate temperatures indoors. Furthermore, findings show that applying glazed balconies is not necessarily a favorable strategy in terms of operational energy use and indoor thermal climate for a building in a subarctic climate. In comparison, using double instead of single pane balcony glazing and lowering the window to wall ratio improved the operational energy and indoor thermal climate performance. A combination of energy efficiency strategies including the addition of insulation on walls and roofs, there placement of windows from double pane to triple pane ones and the installation of heat recovery ventilation were found optimal to achieve considerable savings in both operational and life cycle energy use. In many cases, the fundamental aim of adopting energy efficiency strategies is to reduce operational energy use, while impacts on life cycle energy use and indoor thermal climate are less prioritized. The findings illustrate the importance of considering impacts on operational energy use, life cycle energy use and indoor thermal climate simultaneously to select energy efficiency strategies that ensure a better and more sustainable built environment.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-95833
Date January 2023
CreatorsBhattacharjee, Shimantika
PublisherLuleå tekniska universitet, Industriellt och hållbart byggande, Luleå
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLicentiate thesis / Luleå University of Technology, 1402-1757

Page generated in 0.0013 seconds