Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia Elétrica. / Made available in DSpace on 2012-10-20T16:58:13Z (GMT). No. of bitstreams: 1
210785.pdf: 1284504 bytes, checksum: 2a7fb65da36931b1c5c0fe34e0285396 (MD5) / Técnicas de reconhecimento de padrões são importantes ferramentas dentro da inteligência artificial, sendo aplicáveis em áreas como análise de imagens, reconhecimento de caracteres, reconhecimento de fala, auxílio a diagnósticos médicos, identificação de pessoas, inspeção industrial. Neste trabalho foram desenvolvidas quatro técnicas de reconhecimento de padrões baseadas no cálculo de distância, sendo três delas não paramétricas (PID, SID, MID) e a quarta técnica, a elipsoidal, paramétrica. Esta última técnica pode ser considerada a otimização das três primeiras. Para verificar a validade das técnicas desenvolvidas fez-se um estudo das técnicas de reconhecimento de padrões. Aqui, são apresentadas as principais técnicas: regra de Bayes, máxima verossimilhança, aproximação bayesiana, vizinhança mais próxima (k-NN), Parzen window, perceptron multicamadas, redes RBF e mapas de Kohonen. Em seguida, algumas dessas técnicas foram comparadas com as desenvolvidas aqui. Para fazer essa comparação, foi criado o software classificador, que mostrou ser uma ferramenta útil para o projeto de sistemas de reconhecimento de padrões, pois possibilita testar diferentes técnicas, verificando qual a técnica é mais adequada para cada problema. Essa comparação mostra que as técnicas PID, SID, MID e elipsoidal têm bom desempenho e que podem ser alternativas a considerar-se em projetos de sistemas de reconhecimento de padrões.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufsc.br:123456789/85269 |
Date | January 2003 |
Creators | Ribeiro, João Henrique Burckas |
Contributors | Universidade Federal de Santa Catarina, Azevedo, Fernando Mendes de |
Publisher | Florianópolis, SC |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | xii, 89 f.| il., tabs., grafs. |
Source | reponame:Repositório Institucional da UFSC, instname:Universidade Federal de Santa Catarina, instacron:UFSC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds