Return to search

Hierarchical outranking methods for multi-criteria decision aiding

Els mètodes d’Ajut a la Decisió Multi-Criteri assisteixen en la pressa de decisions implicant múltiples criteris conflictius. Existeixen dos enfocaments principals per resoldre aquest tipus de problemes: els mètodes basats en utilitat i d’outranking, cadascun amb les seves fortaleses i debilitats. Els mètodes outranking estan basats en models d’elecció social combinats amb tècniques d’intel·ligència artificial (com gestió de dades categòriques o d’incertesa). Son eines per una avaluació i comparació realista d’alternatives, basant-se en les necessitats i coneixements del prenedor de la decisió. Una de les debilitats dels mètodes outranking és la no consideració de jerarquies de criteris, que permeten una organització natural del problema, distingint diferents nivells de generalitat que modelen les relacions taxonòmiques implícites entre criteris. En aquesta tesi ens enfoquem en el desenvolupament d’eines d’outranking jeràrquiques i la seva aplicació en casos d’estudi reals per problemes de classificació i rànquing. / Los métodos de Ayuda a la Decisión Multi-Criterio asisten en la toma de decisiones involucrando múltiples criterios conflictivos. Existen dos enfoques principales para resolver éste tipo de problemas: los métodos basados en utilidad y de outranking, cada uno con sus fortalezas y debilidades. Los métodos outranking están basados en modelos de elección social combinados con técnicas de Inteligencia Artificial (como gestión de datos categóricos o de incertidumbre). Son herramientas para una evaluación y comparación realista de alternativas, basándose en las necesidades y conocimientos del tomador de decisión. Una de las debilidades de los métodos outranking es la no consideración de jerarquías de criterios, que permiten una organización natural del problema, distinguiendo distintos niveles de generalidad que modelan las relaciones taxonómicas implícitas entre criterios. En ésta tesis nos enfocamos en el desarrollo de herramientas de outranking jerárquicas y su aplicación en casos de estudio reales para problemas de clasificación y ranking. / Multi-Criteria Decision Aiding (MCDA) methods support complex decision making involving multiple and conflictive criteria. MCDA distinguishes two main approaches to deal with this type of problems: utility-based and outranking methods, each with its own strengths and weaknesses. Outranking methods are based on social choice models combined with Artificial Intelligence techniques (such as the management of categorical data or uncertainty). They are recognized as providing tools for a realistic assessment and comparison of a set of alternatives, based on the decision maker’s knowledge and needs. One of the main weaknesses of the outranking methods is the lack of consideration of hierarchies of criteria, which enables the decision maker to naturally organize the problem, distinguishing different levels of generality that model the implicit taxonomical relations between the criteria. In this thesis we focus on developing hierarchical outranking tools and their application to real-world case studies for ranking and sorting problems.

Identiferoai:union.ndltd.org:TDX_URV/oai:www.tdx.cat:10803/308668
Date22 June 2015
CreatorsDel Vasto Terrientes, Luis Miguel
ContributorsValls, Aïda, Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques
PublisherUniversitat Rovira i Virgili
Source SetsUniversitat Rovira i Virgili
LanguageCatalan
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Format176 p., application/pdf
SourceTDX (Tesis Doctorals en Xarxa)
RightsADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs., info:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds