Dans cette thèse nous étudions un super-analogue de l'espace de Teichmüller des surfaces à trous. Le but de notre étude est la construction sur cet espace de coordonnées analogues aux coordonnées de décalage de Thurston-Bonahon-Fock-Penner. Ces coordonnées dépendent du choix d'une triangulation idéale de la surface de départ. Nous étudions les changements de coordonnées lorsque l'on change cette triangulation de la surface. Nous démontrons également que cet espace possède une structure de Poisson canonique et que cette structure est indépendante du choix de la triangulation. / In this thesis we study a superanalogue of the Teichmüller space of surfaces with holes.The aim of our study is the construction of coordinates on this space which are analogousto the Thurston-Bonahon-Fock-Penner shear coordinates. These coordinates depend on a choice of an ideal triangulation of the given surface. We study the changes of coordinates when we modify the triangulation by elementary moves. We also show that this spaceadmits a canonical Poisson structure which is independent of the choice of a triangulation.
Identifer | oai:union.ndltd.org:theses.fr/2013STRAD010 |
Date | 25 June 2013 |
Creators | Bouschbacher, Fabien |
Contributors | Strasbourg, Fock, Vladimir |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds