Series-fed printed slot antenna arrays excited by microstrip lines are low profile, easy to manufacture, low cost structures that found use in applications that doesn&rsquo / t require high power levels with having advantage of easy integration with microwave front-end circuitry. In this thesis, design and analysis of microstrip line fed slot antenna arrays are investigated. First an equivalent circuit model that ignores mutual coupling effects between slots is studied. A 6-element array is designed by using this equivalent circuit model. From the measurement and electromagnetic simulation results of this array, it is concluded that mutual coupling effects should be considered in order to achieve a successful design that meets the design specifications related to the main beam direction and sidelobe levels of the antenna. Next, an improved equivalent circuit model proposed for stripline fed slot antenna arrays is studied. It is observed that, the mutual coupling effects are incorporated into the equivalent model through the utilization of active impedance concept. Finally, the design equations proposed in the improved equivalent circuit model are derived for the microstrip line fed slot antenna array structure. To demonstrate the validity and the accuracy of the derived design equations, results obtained by the proposed analysis method are compared with simulation and measurement results. It is concluded that the proposed method successfully predicts the radiation pattern of the array by including the mutual coupling effects.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612447/index.pdf |
Date | 01 October 2010 |
Creators | Mustafa, Incebacak |
Contributors | Alatan, Lale |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for METU campus |
Page generated in 0.0019 seconds