La respiration du sol (Rs) en milieu forestier est influencée par les conditions hydroclimatiques du sol ainsi que par la composition en espèces et la qualité de la litière. La hausse des températures et les changements dans les patrons de précipitation, attendus en contexte de changements climatiques, ont donc un fort potentiel de modifier Rs et ainsi, la concentration de CO2 atmosphérique. En ce sens, ce projet de recherche visait tout d’abord à étudier l’effet d’un réchauffement et d’un assèchement artificiels des sols sur Rs, puis à évaluer si la réponse des sols au chauffage allait varier selon le type de couvert forestier. Nous avons échantillonné le flux gazeux des sols sur deux ans dans trois peuplements d'une forêt tempérée décidue à sa limite nordique. Les résultats ont démontré une faible accentuation de Rs en réponse au chauffage, mais seulement jusqu’à un seuil de température du sol d’environ 15°C à partir duquel l’effet positif du chauffage s’estompe, voire s’inverse. Cependant, cette tendance n’était pas systématique puisque les trois peuplements ont démontré une sensibilité différente au chauffage, l’érablière à hêtre étant beaucoup plus sensible que la forêt mixte et l’érablière à bouleau. Ce qui était toutefois commun aux trois peuplements, c’est l’affaiblissement de l’influence de la température sur Rs passé le seuil de 15°C. Outre la température du sol, l’intégration d’autres variables, comme la teneur en eau, l’activité ionique en N, P et Ca de la solution de sol et la présence de conifères au modèle cherchant à expliquer la variabilité de Rs, n’a pas augmenté la puissance explicative du modèle, et ce pour aucun des traitements ou des peuplements. Les résultats de cette étude suggèrent néanmoins un élément intéressant, soit le plafonnement potentiel de Rs malgré la hausse des températures. Ceci apporte un questionnement quant à la magnitude de la rétroaction positive entre le cycle du carbone terrestre et le système climatique. / Forest soil respiration (Rs) is driven by soil hydroclimatic conditions as well as species composition and litter quality. Rising temperatures and changes in precipitation patterns, expected in the context of climate change, therefore have a strong potential to modify Rs and thus the concentration of atmospheric CO2. This research aimed to study the effect of artificial heating and drying of soils on Rs, and to assess whether the response of soils to heating would vary according to the type of forest cover. We sampled soil gas flux over two years in three stands of a temperate deciduous forest at its northern edge. The results demonstrated a weak accentuation of Rs in response to heating, but only up to a soil temperature threshold of about 15°C, where the positive heating effect decreases or is even reversed. However, this trend was not systematic since the three stands demonstrated a different sensitivity to heating, the maple-beech forest being much more sensitive than the mixed forest and the maple-birch forest. Yet, what was common to the three stands was the decrease of the influence of temperature on Rs above the threshold of 15°C. In addition to soil temperature, the integration of other variables, such as water content, ionic activity in N, P and Ca of the soil solution and the presence of conifers in the model seeking to explain the variability of Rs, did not increase the explanatory power of the model for any of the treatments or stands. The results of this study highlight a potential capping of Rs despite the increase in temperatures. They bring questions regarding the magnitude of the positive feedback between the terrestrial carbon cycle and the climate system.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/32210 |
Date | 05 1900 |
Creators | Laberge, Sharlène |
Contributors | Bélanger, Nicolas |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.003 seconds