<p>In the thesis are introduced and investigated spaces of Burling and of Roumieu type tempered ultradistributions, which are natural generalization of the space of Schwartz’s tempered distributions in Denjoy-Carleman-Komatsu’s theory of ultradistributions. It has been proved that the introduced spaces preserve all of the good properties Schwartz space has, among others, a remarkable one, that the Fourier transform maps continuposly the spaces into themselves.<br />In the first chapter the necessary notation and notions are given.<br />In the second chapter, the spaces of ultrarapidly decreasing ultradifferentiable functions and their duals, the spaces of Beurling and of Roumieu tempered ultradistributions, are introduced; their topological properties and relations with the known distribution and ultradistribution spaces and structural properties are investigated; characterization of the Hermite expansions and boundary value representation of the elements of the spaces are given.<br />The spaces of multipliers of the spaces of Beurling and of Roumieu type tempered ultradistributions are determined explicitly in the third chapter.<br />The fourth chapter is devoted to the investigation of Fourier, Wigner, Bargmann and Hilbert transforms on the spaces of Beurling and of Roumieu type tempered ultradistributions and their test spaces.<br />In the fifth chapter the equivalence of classical definitions of the convolution of Beurling type ultradistributions is proved, and the equivalence of, newly introduced definitions, of ultratempered convolutions of Beurling type ultradistributions is proved.<br />In the last chapter is given a necessary and sufficient condition for a convolutor of a space of tempered ultradistributions to be hypoelliptic in a space of integrable ultradistribution, is given, and hypoelliptic convolution equations are studied in the spaces.<br />Bibliograpy has 70 items.</p> / <p>U ovoj tezi su proučavani prostori temperiranih ultradistribucija Beurlingovog i Roumieovog tipa, koji su prirodna uopštenja prostora Schwarzovih temperiranih distribucija u Denjoy-Carleman-Komatsuovoj teoriji ultradistribucija. Dokazano je ovi prostori imaju sva dobra svojstva, koja ima i Schwarzov prostor, izmedju ostalog, značajno svojstvo da Furijeova transformacija preslikava te prostore neprekidno na same sebe.<br />U prvom poglavlju su uvedene neophodne oznake i pojmovi.<br />U drugom poglavlju su uvedeni prostori ultrabrzo opadajucih ultradiferencijabilnih funkcija i njihovi duali, prostori Beurlingovih i Rumieuovih temperiranih ultradistribucija; proučavana su njihova topološka svojstva i veze sa poznatim prostorima distribucija i ultradistribucija, kao i strukturne osobine; date su i karakterizacije Ermitskih ekspanzija i graničnih reprezentacija elemenata tih prostora.<br />Prostori multiplikatora Beurlingovih i Roumieuovih temperiranih ultradistribucija su okarakterisani u trećem poglavlju.<br />Četvrto poglavlje je posvećeno proučavanju Fourierove, Wignerove, Bargmanove i Hilbertove transformacije na prostorima Beurlingovih i Rouimieovih temperiranih ultradistribucija i njihovim test prostorima.<br />U petoj glavi je dokazana ekvivalentnost klasičnih definicija konvolucije na Beurlingovim prostorima ultradistribucija, kao i ekvivalentnost novouvedenih definicija ultratemperirane konvolucije ultradistribucija Beurlingovog tipa.<br />U poslednjoj glavi je dat potreban i dovoljan uslov da konvolutor prostora temperiranih ultradistribucija bude hipoeliptičan u prostoru integrabilnih ultradistribucija i razmatrane su neke konvolucione jednačine u tom prostoru.<br />Bibliografija ima 70 bibliografskih jedinica.</p>
Identifer | oai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)73337 |
Date | 03 July 1992 |
Creators | Perišić Dušanka |
Contributors | Pilipović Stevan, Stanković Bogoljub, Marić Vojislav, Takači Arpad |
Publisher | Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, University of Novi Sad, Faculty of Sciences at Novi Sad |
Source Sets | University of Novi Sad |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.002 seconds