The spatial patterns of bimaterial interfaces along the Parkfield section of the San Andreas Fault (SAF) and central section of the Calaveras Fault are systematically investigated with large data sets of near-fault waveforms. Different from the usage of direct P and S waves in traditional tomographic studies, a particular seismic phase named fault zone head wave (FZHW) is used to image the bimaterial fault interfaces. The results show clear variations of seismic velocities contrast both along-strike and along-depth directions in both regions, which is in general consistent with local geological setting at surface and existing 3D tomography results. In the Parkfield section of SAF, the result of velocity contrast is used to test the relationship between preferred rupture directions of M6 Parkfield earthquakes and bimaterial interface. Strong velocity contrast (~5-10%) near Middle Mountain (MM) could control the rupture directions of nearby earthquakes to SE, such as the case for 1966 M6 Parkfield earthquake. In comparison, weak velocity contrast (~0-2%) near the epicenter of the 2004 Parkfield M6 earthquake (i.e., Gold Hill) probably has no influence on controlling its rupture direction, which is consistent with the bilateral rupture of the 2004 Parkfield earthquake. In the central Calaveras Fault, a detailed analysis of the moveout between FZHWs and direct P waves revealed the existence of a complicated fault structure with velocity contrast increasing from NW to SE of station CCO. The high velocity contrast SE of station CCO could be caused by a low-velocity zone SE of station CCO.
The spatio-temporal variations of seismic velocity around the central Calaveras Fault and its nearby region are investigated based on the waveform analysis of 333 repeating clusters following the 1984 ML6.2 Morgan Hill earthquake. Clear reduction of seismic velocity is shown for all repeating clusters immediately after the mainshock, followed by a logarithmic recovery. The coseismic change mostly occurs at shallow layers (top few hundred meters) for the region away from the rupture area of the mainshock, but extends much deeper around the rupture zone of the Morgan Hill earthquake. The estimated depth of the damage zone is up to 6 km in the fault based on the repeating clusters directly beneath station CCO.
Finally, temporal changes around the Parkfield section of SAF are studied using recently developed ambient noise cross-correlation technique. The extracted daily empirical Green functions (EGFs) from 0.4-1.3 Hz noise records are used to estimate subtle temporal changes associated with large earthquakes from local to teleseismic distances. The results show clear coseismic reduction of seismic velocities after the 2004 M6 Parkfield earthquake, similar to the previous observation based on repeating earthquakes. However, no systematic changes have been detected for other four regional/teleseismic events that have triggered clear tremor activity in the same region. These results suggest that temporal changes associated with distance sources are very subtle or localized so that they could not be detected within the resolution of the current technique (~0.2%).
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/37242 |
Date | 27 August 2010 |
Creators | Zhao, Peng |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.002 seconds