Introduits au début des années 1990, les systèmes immunitaires artificiels visent à adapter les propriétés du système immunitaire biologique, telles que sa scalabilité et son adaptivité, à des problèmes informatiques : sécurité, mais également optimisation et classification. Cette thèse explore une nouvelle direction en se concentrant non sur les processus biologiques et les cellules elles-mêmes, mais sur les interactions entre les sous-systèmes. Ces modes d’interaction engendrent les propriétés reconnues du système immunitaire : détection d’anomalies, reconnaissance des pathogènes connus, réaction rapide après une exposition secondaire et tolérance à des organismes symbiotiques étrangers. Un ensemble de systèmes en interaction formant un écosystème, cette nouvelle approche porte le nom d’Écosystème Immunitaire Artificiel. Ce modèle est mis à l’épreuve dans un contexte particulièrement sensible à la scalabilité et à la performance : la supervision de réseaux, qui nécessite l’analyse de séries temporelles en temps réel avec un expert dans la boucle, c’est-à-dire en utilisant un apprentissage actif plutôt que supervisé. / Since the early 1990s, immune-inspired algorithms have tried to adapt the properties of the biological immune system to various computer science problems, not only in computer security but also in optimization and classification. This work explores a different direction for artificial immune systems, focussing on the interaction between subsystems rather than the biological processes involved in each one. These patterns of interaction in turn create the properties expected from immune systems, namely their ability to detect anomalies, memorize their signature to react quickly upon secondary exposure, and remain tolerant to symbiotic foreign organisms such as the intestinal fauna. We refer to a set of interacting systems as an ecosystem, thus this new approach has called the Artificial Immune Ecosystem. We demonstrate this model in the context of a real-world problem where scalability and performance are essential: network monitoring. This entails time series analysis in real time with an expert in the loop, i.e. active learning instead of supervised learning.
Identifer | oai:union.ndltd.org:theses.fr/2019STRAD007 |
Date | 18 June 2019 |
Creators | Guigou, Fabio |
Contributors | Strasbourg, Collet, Pierre |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds