Return to search

The effect of Mn addition on tensile deformation behavior of aluminum alloy sheets processed by heavy cold-rolling and partial anneal

The influence of manganese (Mn) addition on the tensile properties of recovery-annealed aluminum alloy sheet was studied. After 200 ~ 220¢X C annealing, these alloys exhibit hardening as compared to the as-rolled state. Besides the amount of Mn in solution, the presence of Fe and Si in these alloys was also a vital factor responsible for the hardening. These recovery annealed aluminum alloy sheets show increased tensile elongation with increasing annealing temperature, which is mainly due to the contribution of post-uniform elongation (PUE). The plastic deformation during PUE is associated with development of fine slip bands distributed in the gauge length of the specimen. It was noted that after recovery anneal, the alloy with 0.74 wt% Mn exhibit better combination of strength and ductility as compared to alloys with lower Mn content.
In general, these alloys in partially annealed condition show poor tensile ductility at RT, which is mainly attributed to the low work hardening rate associated with the UFG structure. These partially annealed aluminum alloys exhibit highly anisotropic tensile properties, specially a rather poor ductility along the direction of 45o or 90o from the rolling direction at RT. The poor ductility in 45o or 90o direction could be related to flow localization associated with intense shear banding. Discontinuous yielding plays a pivotal role to trigger the flow localization which is affected by the strain path change. However, for alloys tested at 77 K in 45¢X or 90¢X direction, the deformation proceeds by the propagation of Lüders band initially and followed by strain hardening. In general, the tensile elongation can be enhanced greatly irrespective of the stress direction, because a higher work hardening rate can be maintained due to reduced dynamic recovery rate.
The yield stress is orientation dependent, which is in the order of 90¢X > 0¢X > 45¢X. The anisotropic tensile behavior has its origin in the rolling texture. The Schmid factor analysis indicates that specimens tested in 45o direction would have lower yield strength as compared to those tested in 0o or 90o direction. Both experimental measurements and simulation indicate that after 30% tensile straining, the copper texture in the partially annealed aluminum alloy is enhanced 0¢X test, and the brass texture is enhanced in 90¢X test, while the texture distribution does not change significantly in 45¢X test. It is suggested that the texture evolution during tensile straining has significant effect on the anisotropy of work hardening rate.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0906111-010609
Date06 September 2011
CreatorsLee, Ni-Hsing
ContributorsD. Gun, P. W. Kao, L. W. Chang, C. P. Chang, J. C. Kuo, C. Y. Yu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0906111-010609
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0019 seconds