This thesis investigates the integration of 3D printing with clay and post-tensioning techniques, seeking to establish a structural reinforcement system for 3D-printed clay pieces. The primary goal is to marry the inherent flexibility of clay with the strength provided by post-tensioning, thereby introducing a novel construction paradigm. The culmination of this research involves the design and realization of a pavilion or architectural structure, serving as a practical demonstration of the proposed system's viability in real-world applications. Through an exhaustive review of existing projects and the development of an innovative construction methodology, this study contributes to the evolving landscape of sustainable and adaptable architectural solutions. / Master of Architecture / In this research, I delved into the intricate realm of construction, specifically exploring the possibilities when 3D printing technology meets clay, an age-old material. The main thrust was to devise a system that fortifies 3D printed clay pieces using a technique known as post-tensioning—transforming them into not just visually captivating structures but also robust in their structural integrity. Picture a pavilion or architectural marvel materializing from this fusion. This research isn't confined to theoretical musings; it's about crafting tangible structures that redefine the horizons of sustainable and adaptable architecture. Join me in navigating this journey where clay seamlessly converges with the avant-garde!
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/117879 |
Date | 05 February 2024 |
Creators | Sakhdari, Saeed |
Contributors | Architecture, Al, Stefan Johannes, Vorster, Clive R., Haghnazar Kouchaksaraei, Ramtin |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.002 seconds