The aim of this Master's thesis is to describe basic technics of evolutionary computing, convolutional neural networks (CNN), and automated design of neural networks using neuroevolution ( NAS - Neural Architecture Search ). NAS techniques are currently being researched more and more, as they speed up and simplify the lengthy and complicated process of designing artificial neural networks. These techniques are also able to search for unconventional architectures that would not be found by classic methods. The work also contains the design and implementation of software capable of automated development of convolutional neural networks using the open-source library TensorFlow. The program uses a multiobjective NSGA-II algorithm for designing accurate and compact CNNs.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:445494 |
Date | January 2021 |
Creators | Pristaš, Ján |
Contributors | Mrázek, Vojtěch, Sekanina, Lukáš |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds