Táto práca sa zameriava na analýzu vybraných častí GPON rámca pomocou algoritmov strojového učenia implementovaných pomocou knižnice TensorFlow. Vzhľadom na to, že GPON protokol je definovaný ako sada odporúčaní, implementácia naprieč spoločnosťami sa môže líšiť od navrhnutého protokolu. Preto analýza pomocou zásobníkového automatu nie je dostatočná. Hlavnou myšlienkou je vytvoriť systém modelov za použitia knižnice TensorFlow v Python3, ktoré sú schopné detekovať abnormality v komunikácií. Tieto modely používajú viaceré architektúry neuronových sietí (napr. LSTM, autoencoder) a zameriavajú sa na rôzne typy analýzy. Tento systém sa naučí na vzorovej vzorke dát a upozorní na nájdené odlišnosti v novozachytenej komunikácií. Výstupom systému odhad podobnosti aktuálnej komunikácie v porovnaní so vzorovou komunikáciou.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:413085 |
Date | January 2020 |
Creators | Tomašov, Adrián |
Contributors | Horváth, Tomáš, Holík, Martin |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | English |
Detected Language | Unknown |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds