Return to search

Corte em grafos e segmentação de imagens utilizando um algoritmo aglomerativo de agrupamento hierárquico / Graph cut and image segmentation using an hierarquical agglomerative clustering algorithm

Orientador: Marco Antonio Garcia de Carvalho / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Tecnologia / Made available in DSpace on 2018-08-24T15:15:13Z (GMT). No. of bitstreams: 1
Chiba_ElaineAyumi_M.pdf: 5856831 bytes, checksum: f9d4b4bea391d9b772f2c53ce2466420 (MD5)
Previous issue date: 2014 / Resumo: Representar os elementos de uma imagem em forma de grafos torna a estrutura organizada permitindo formular problemas de forma flexível e ser computacionalmente mais eficiente. Existem muitas técnicas da teoria de grafos sendo utilizadas em processamento digital de imagens. Em particular, o particionamento em grafos ou corte em grafos tem sido estudada por diversos autores como uma ferramenta de segmentação de imagens. Particionamento de um grafo refere-se à sua divisão em vários subgrafos tais que cada um deles representa um objeto de interesse na imagem. Neste trabalho, propomos um algoritmo de agrupamento hierárquico aglomerativo dos nós do grafo com base nas métricas de corte e corte médio. As segmentações foram avaliadas usando o benchmark da Berkeley BSDS500 que compara e classifica as segmentações em relação à outras técnicas existentes na literatura. Os resultados obtidos são promissores e nos permite concluir de que a combinação das métricas de corte e corte médio possibilitou melhores segmentações / Abstract: Representing the elements of an image in graphs makes the structure organized allowing to formulate problems in a flexible manner and can be more computationally efficient. There are many techniques of graph theory that are used in digital image processing. In particular, the graph partitioning or graph cut has been studied by several authors as a tool for image segmentation. Partitioning a graph refers to its division into several subgraphs such that each of them represents a meaningful object of interest in the image. In this work we propose a algorithm based on hierarchical agglomerative clustering of the graph nodes driven by the cut and mean cut criteria. The segmentati- ons results were evaluated using the benchmark of Berkeley BSDS500 that compares and classifies the results in relation to other existing techniques in the literature. The results obtained are promising and allows us to conclude that the combination of the cut and mean cut criteria possible best segmentations / Mestrado / Tecnologia e Inovação / Mestra em Tecnologia

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/267698
Date24 August 2018
CreatorsChiba, Elaine Ayumi, 1988-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Carvalho, Marco Antonio Garcia de, 1970-, Papa, João Paulo, Pedrini, Hélio
Publisher[s.n.], Universidade Estadual de Campinas. Faculdade de Tecnologia, Programa de Pós-Graduação em Tecnologia
Source SetsIBICT Brazilian ETDs
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format39 f. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0063 seconds