Return to search

Koroze neželezných kovových materiálů / Corrosion of Nonferrous Metal Materials

In the presented dissertation thesis, I closely focused on corrosion resistance of non-ferrous metals. For full understanding of the possibilities for increasing corrosion resistance, it was vital to initially recognize the influences to the corrosion system of the samples and their surrounding environment. For this purpose, I focused on heat treatment, corrosion, and protective coatings, in the theoretical part of the thesis. For the subsequent research, it was necessary to define several constant variables, first. For this purpose, I have chosen a group of magnesium alloys, namely AZ91 Alloy and 3.5 % NaCl Electrolyte. AZ91 Alloy is of heterogenous structure formed by a solid solution of aluminum in magnesium, intermetallic phase in Mg17Al12, and their eutectic. Local microcells tend to occur in these heterogenities, which leads to faster corrosion. In order to increase corrosion resistance of the alloy, I used a combination of heat treatment and protective phosphate coating. For creating of the desired structure, which further affects compact coating formation, I selected a process involving solution heating with precipitation hardening T6. Secondary goals of the thesis involved optimization of standard technical procedures for the sake of increasing efficiency. With regard to this goal, I introduced optimized heat treatment T6 using accelerated cooling of a sample in water and liquid nitrogen. A modification besides the standard phosphating procedure was carried out with no activation step. For evaluation of corrosion resistance of the samples, I conducted water immersion tests using electrochemical methods; such as potenciodynamic curves combined with electrochemical impedance spectroscopy. In order to streamline the evaluation of the corrosion surface in technical practice, I used automatic detection. Substantial improvement of corrosion resistance of the above mentioned system, compared to heat-untreated samples, was proven through electrochemical methods. Due to accelerated cooling, a more homogeneous structure was achieved, which could be further utilized to create more uniform protective coating. For some phosphate coating, specifically manganese phosphate coating, I identified certain modifications that were in line with the set goals; i.e. skipping the activation phase, and using automatic detection for evaluation of uniform corrosion on the samples.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:390295
Date January 2018
CreatorsŠevčíková, Barbora
ContributorsNový,, František, Pacal, Bohumil, Havlica, Jaromír
PublisherVysoké učení technické v Brně. Fakulta chemická
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0019 seconds