A alta disponibilidade de informações em saúde por meio de sistemas de informação só pode ser proporcionada com a utilização de sistemas que sejam capazes de trocar dados de forma segura e consistente. Para isso, estes sistemas necessitam ser interoperáveis, capazes de trocar informações. Uma das características mais importantes de tais sistemas é a utilização de terminologias em saúde, permitindo a codificação dos termos clínicos de maneira robusta e consistente. Algumas das terminologias mais conhecidas e utilizadas são: SNOMED-CT, ICD-CM, ICD, LOINC, NANDA, TUSS, CBHPM, Tabela de Procedimentos SUS, entre outras. Quando os sistemas não se utilizam de uma mesma terminologia para codificação de um mesmo conceito é necessário a realização de mapeamentos e traduções entre as terminologias. O mapeamento entre terminologias consiste em estabelecer as associações pertinentes às terminologias para que cada termo pertencente a uma possa ser associado a algum termo da outra. Este mapeamento, geralmente, é criado por especialistas de domínio, que atuam analisando as duas terminologias em questão e estabelecendo manualmente estas associações. Neste trabalho, propomos uma metodologia que visa facilitar a realização deste tipo de mapeamento, por meio da utilização de dois recursos: Regras de Associação, para extração das associações preexistentes entre as terminologias em registros clínicos; e Busca Textual, para pareamento entre conceitos das duas terminologias baseado na identificação de termos comuns. O auxílio à criação destes mapeamentos é proporcionado por meio de sugestões de relações existentes entre as terminologias. Como resultado deste trabalho obtivemos uma metodologia genérica de mapeamento entre terminologias capaz de auxiliar com sucesso os especialistas. Em aproximadamente 40% dos casos os especialistas concordaram com uma das sugestões apresentadas. De forma complementar, obtivemos o mapeamento parcial entre duas terminologias: a ICD9-CM e a TUSS, utilizadas como caso de uso para validação da metodologia. / The high availability of health information through information systems can be provided only with the use of systems that are able to exchange data securely and consistently. To this end, these systems need to be interoperable, capable of exchanging information that is understood both at one end as the other. One of the most important characteristics of such systems is the use of terminologies in health, allowing the coding of clinical terms in a robust and consistent manner. Some of the most known and used terminologies are: SNOMED-CT, ICD-CM, ICD, LOINC, NANDA, TUSS, CBHPM, and SUS Procedures Table, among others. When systems do not use the same terminology for encoding the same concept, it is necessary to perform mappings and translations between the terminologies. The mapping between terminologies consists on establishing the relevant associations present in terminologies, so that each term belonging to one can be associated unambiguously to the terms belonging to another. This mapping is typically created by domain experts who work analyzing the two terms in question and manually setting these associations. In this paper, we propose a methodology that aims to facilitate this type of mapping, through the use of two frameworks: Association Rules, for the extraction of preexisting associations between the terminologies in clinical records; and Textual Search, for pairing between the two terminologies concepts based on the identification of common terms. The creation of these mappings by experts is aided by the method suggesting links between the terminologies through the Association Rules or Textual Search. As a result of this work we obtained a generic methodology for mapping between terminologies able to successfully assist the experts. In approximately 40% of cases the experts agreed with the suggestions. As a complement, we obtained a partial mapping between two specific terminologies for coding surgical procedures: the ICD9-CM and TUSS, used as use case to validate the methodology.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-28032016-135323 |
Date | 11 September 2014 |
Creators | Thiago Fernandes de Freitas Dias |
Contributors | Joaquim Cezar Felipe, Lauro Wichert Ana, Milton Roberto Laprega |
Publisher | Universidade de São Paulo, Bioengenharia, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds