Return to search

Identifikace a izolace PHA produkujících bakterií / Identification and isolation of PHA producing bacteria

Polyhydroxyalkanoates (PHA) are microbial storage polyesters that represent a renewable and environmentally friendly alternative to petrochemical plastics. However, their production and use are severely disadvantaged by the high production cost. The use of extremophilic PHA producers is one of the ways to reduce the cost of PHA production. Extremophiles bring numerous advantages resulting from the high robustness of the process against microbial contamination. In this doctoral thesis, attention was focused on the study of PHA production using selected halophilic and thermophilic microorganisms. Representatives of the genus Halomonas were mainly from public collections of microorganisms. Two promising PHA producers on waste frying oil were identified, namely Halomonas hydrothermalis and Halomonas neptunia. Both strains achieved good PHA yields in flask experiments. With the addition of suitable structural precursors, they were also able to produce copolymers with interesting material properties. However, in the proposed thesis, the main emphasis was placed on the study of PHA production using thermophilic microorganisms. As a part of the work, the isolation of thermophilic PHA producers from various thermophilic consortia (active sludge, compost, etc.) was performed. During isolations experiments, an original isolation procedure was designed using changes in osmotic pressure, the so-called osmoselection. Dozens of promising thermophilic PHA producers were obtained thanks to this original approach. They were taxonomically classified using 16S rRNA and tested for production potential. The most promising PHA producer was the isolate which was classified as Aneurinibacillus sp. H1. This bacterium is able to utilize a variety of substrates, including waste glycerol, to produce PHA. Even more important is the capability of synthesizing copolymers with a high content of 4-hydroxybutyrate. The monomer composition of the PHA copolymer and thus the material properties of the prepared copolymer can be controlled by suitable adjustment of the cultivation conditions. The prepared copolymer P(3HB-co-4HB) has unique properties and the great application potential in numerous high-end applications, for example in the field of health care, food industry or cosmetics.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:438296
Date January 2021
CreatorsPernicová, Iva
ContributorsOndrejovič, Miroslav, Rychtera, Mojmír, Obruča, Stanislav
PublisherVysoké učení technické v Brně. Fakulta chemická
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0016 seconds