Return to search

Commutative n-ary Arithmetic

Motivated by primality and integer factorization, this thesis introduces generalizations of standard binary multiplication to commutative n-ary operations based upon geometric construction and representation. This class of operations are constructed to preserve commutativity and identity so that binary multiplication is included as a special case, in order to preserve relationships with ordinary multiplicative number theory. This leads to a study of their expression in terms of elementary symmetric polynomials, and connections are made to results from the theory of polyadic (n-ary) groups. Higher order operations yield wider factorization and representation possibilities which correspond to reductions in the set of primes as well as tiered notions of primality. This comes at the expense of familiar algebraic properties such as associativity, and unique factorization. Criteria for primality and a naive testing algorithm are given for the ternary arithmetic, drawing heavily upon modular arithmetic. Finally, connections with the theory of partitions of integers and quadratic forms are discussed in relation to questions about cardinality of primes.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-3075
Date15 May 2015
CreatorsBingham, Aram
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations
Rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/

Page generated in 0.002 seconds