Optimized methods for the regioselective and stereospecific synthesis of both trisubstituted and tetrasubstituted olefins as single isomers from E-β-chloro-α-iodo-α,β-unsaturated esters have been developed from previous work done in the Ogilvie lab. These optimized methods have led to the synthesis of trans isomeric enediynes that can be photoisomerized to their respective cis isomers and subsequently undergo microwave-assisted Bergman cycloaromatizations. Furthermore, both cis and trans isomeric enediynes that have propargyl ether substituents have been found to be able to undergo photoactivated Bergman cyclizations without the need for an intermolecular hydrogen donor. A mechanism study has confirmed that the Bergman cyclization products that form without the presence of an intermolecular hydrogen donor undergo a series of 1,5-hydrogen shifts as intermediates. A series of optimizations to these reactions were carried out, in part by utilizing electron-donating or electron-withdrawing functional groups to help stabilize the resulting radicals that form on the intermediates, and thus increase the yield of the associated Bergman cyclization products.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU./en#10393/20456 |
Date | 30 November 2011 |
Creators | Pianosi, Anthony |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thèse / Thesis |
Page generated in 0.002 seconds