Return to search

Invariants d'Iwasawa dans les extensions de Lie p-adiques des corps de nombres

Le but de cette thèse est l'étude des invariants d'Iwasawa attachés aux p-groupes des classes généralisés dans les extensions de Lie p-adiques de corps de nombres.Ces invariants ont été introduits par Iwasawa pour les Zp-extensions. Les travaux de Venjakob sur la structure des modules sur l'algèbre d'Iwasawa d'un groupe de Lie p-adique ont permis d'en généraliser la définition à la théorie non-commutative. Par des techniques de descente et une étude algébrique fine de la structure des modules d'Iwasawa sur un groupe non-commutatif, on dégage des formules asymptotiques pour les p-groupes des classes généralisés le long d'une extension de corps de nombres de groupe de Galois p-valué. Ces formules ont pour paramètres les invariants d'Iwasawa de l'extension. Elles sont rendues plus précises dans le cas des Zp-extensions, où on remarque qu'un défaut de descente doit être pris en compte et est d'impact non négligeable sur le résultat final. Ces résultats asymptotiques sont ensuite exploités à l'aide de la théorie du miroir. Ceci conduit à des formules de dualité entre ramification et décomposition concernant les invariants d'Iwasawa.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00839578
Date06 December 2011
CreatorsPerbet, Guillaume
PublisherUniversité de Franche-Comté
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds