Distributed Point Source Method (DPSM) was developed by Placko and Kundu 1, as a technique for modeling electromagnetic and elastic wave propagation problems. DPSM has been used for modeling ultrasonic, electrostatic and electromagnetic fields scattered by defects and anomalies in a structure. The modeling of such scattered field helps to extract valuable information about the location and type of defects. Therefore, DPSM can be used as an effective tool for Non-Destructive Testing (NDT). Anisotropy adds to the complexity of the problem, both mathematically and computationally. Computation of the Green's function which is used as the fundamental solution in DPSM is considerably more challenging for anisotropic media, and it cannot be reduced to a closed-form solution as is done for isotropic materials. The purpose of this study is to investigate and implement DPSM for an anisotropic medium. While the mathematical formulation and the numerical algorithm will be considered for general anisotropic media, more emphasis will be placed on transversely isotropic materials in the numerical example presented in this paper. The unidirectional fiber-reinforced composites which are widely used in today's industry are good examples of transversely isotropic materials. Development of an effective and accurate NDT method based on these modeling results can be of paramount importance for in-service monitoring of damage in composite structures.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/625391 |
Date | 05 April 2017 |
Creators | Fooladi, Samaneh, Kundu, Tribikram |
Contributors | Univ Arizona, Dept Aerosp & Mech Engn, Univ Arizona, Dept Civil Engn & Engn Mech, The Univ. of Arizona (United States), The Univ. of Arizona (United States) |
Publisher | SPIE-INT SOC OPTICAL ENGINEERING |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). |
Relation | http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2258573 |
Page generated in 0.0022 seconds