The surface-related multiple elimination (SRME) method has proven to be successful on a large number of data cases. Most of the applications are still 2D, as the full 3D implementation is still expensive and under development. However, the earth is a 3D medium, such that 3D effects are difficult to avoid. Most of the 3D effects come from diffractive structures, whereas the specular reflections normally have less of a 3D behavior. By separating the seismic data in a specular reflecting and a diffractive part, multiple prediction can be carried out with these different subsets of the input data, resulting in several categories of predicted multiples. Because each category of predicted multiples can be subtracted from the input data with different adaptation filters, a more flexible SRME procedure is obtained. Based on some initial results from a Gulf of Mexico dataset, the potential of this approach is investigated.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU.2429/561 |
Date | January 2007 |
Creators | Verschuur, Dirk J., Wang, Deli, Herrmann, Felix J. |
Publisher | Society of Exploration Geophysicists |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | text |
Rights | Herrmann, Felix J. |
Page generated in 0.0021 seconds