Return to search

Topographic guidance scaffolds for peripheral nerve interfacing

In response to high and rising amputation rates, significant advances have been made in the field of prosthetic limb design. Unfortunately, there exists a lag in the neural interfacing technology required to provide an adequate link between the nervous system and this emerging generation of advanced prosthetic devices. Novel approaches to peripheral nerve interfacing are required to establish the stable, high channel count connections necessary to provide natural, thought driven control of an external prosthesis. Here, a tissue engineering-based approach has been used to create a device capable of interfacing with a regenerated portion of amputated nerve.

As part of this work, a nerve guidance channel design, in which small amounts of interior scaffolding material could be precisely positioned, was evaluated. Guidance channels containing a single thin-film sheet of aligned scaffolding were shown to support robust functional nerve regeneration across extended injury gaps by minimally supplementing natural repair mechanisms. Significantly, these "thin-film enhanced nerve guidance channels" also provided the capability to guide the course of axons regenerating from a cut nerve.

This capability to control axonal growth was next leveraged to create "regenerative scaffold electrodes (RSEs)" able to interface with axons regenerating from an amputated nerve. In the RSE design, low-profile arrays of interfacing electrodes were embedded within layers of aligned scaffolding material, such that regenerating axons were topographically guided by the scaffolding through the device and directly across the embedded electrodes. Chronically implanted RSEs were successfully used to record evoked neural activity from amputated nerves in an animal model. These results demonstrate that the use of topographic cues within a nerve guidance channel might offer the potential to influence the course of nerve regeneration to the advantage of a peripheral nerve interface suitable for limb amputees.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/42938
Date22 November 2010
CreatorsClements, Isaac Perry
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0025 seconds