Return to search

Photoinduced Manipulation of the Molecular Assembly in Heteroleptic Titanium Metal Alkoxides for Use in Optical Devices

The manipulation of molecular structures is an important enabling technology for future advances in nanotechnology. The ability to control the synthesis of nanostructured materials, such as the bond formation and geometry of a molecule is of great significance to nanoscience as nanosystems are constructed from these smaller units. Influencing the assembly of molecular structures at the early stages of material formation can modify the ensuing molecular aggregate structure with the potential for impact in a broad range of optical, chemical, and biological applications. Heteroleptic titanium metal alkoxides (OPy)₂Ti(4MP) ₂ and (OPy)₂Ti(TAP)₂, where OPy = OC₆H₆N, 4MP = OC₆H₄(SH)-4, and TAP = OC₆H₂(CH₂N(CH₃)₂)₃-2,4,6 were investigated as precursors for thin film and solution-based synthesis of oxide materials via the photoactivation of intermolecular reactions (e.g. hydrolysis/condensation) at selected ligand sites about the metal center. Manipulation of the molecular structure of these photosensitive metal alkoxides was achieved through the use of optical irradiation parameters, such as the tuning of the excitation wavelength, total optical fluence, and pulse energy intensity. Irradiating these metal alkoxides with UV-light was seen to cause photodisruption in the ligand groups leading to the formation of Ti-O-Ti linking via hydrolysis and condensation reactions. In spin-coated (OPy)₂Ti(TAP)₂ films, these photoinduced bridge bond formations resulted in an increase in refractive index and film densification as well as produced an insoluble film when rinsed in pyridine. By making use of these photoinduced film properties, the formation of physical relief structures from spin-coated (OPy)₂Ti(TAP)₂ films was demonstrated along with the ability to photopattern sub-micron and nanometer features. In addition, the micro- and nanostructure of thin films were optically manipulated through several deposition methods; a novel dip-coated in-situ photodeposition technique was utilized by illuminating at specific distances above the meniscus to further control the early stages of material formation due to changes in the mobility of the reactants from the evaporation and gravitational draining of the solvent. The ability to manipulate molecular development at the on-set of material formation through different deposition techniques and optical parameters allowed for the creation of several thin film optical devices, such as gratings, micro-optic lenslet arrays, and binary "on-off" patterned devices.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/194666
Date January 2010
CreatorsSchneider, Zachary
ContributorsSimmons-Potter, Kelly, Potter, Kelly, Potter, Jr., Barrett, Falco, Charles
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0019 seconds