Oxygen barrier coatings have the potential to greatly extend the lifetime of certain food products by incorporating them into existing food packaging. Present technologies face definite challenges of maintaining high performance, while attaining simple and inexpensive preparation methods. The oxygen barrier effect obtained with these coatings is also susceptible to a plasticization effect when exposed to high humidity, since water vapor molecules are readily soluble in typically hydrophilic resins. In this work, we demonstrate a 1 – 2 micron thick oxygen barrier coating, prepared on a 12 micron poly(ethylene terephthalate) substrate, that has oxygen transmission rates as low as 1.44 cc m-2 day-1 under standard conditions and can maintain similar oxygen barrier performance at high humidity. This degree of oxygen barrier meets the standard of 1 – 10 cc m-2 day-1 established for food packaging applications. The coating is prepared through use of sol-gel chemistry between poly(vinyl alcohol) and vinyltrimethoxsilane molecules, which form a strong network resin through hydrolysis and condensation reactions. The formulation of these oxygen barrier coatings allows for variability of solids percentage and viscosity without significant change in performance. The ability to scale up the preparation of these coated films was tested successfully on an industrial flexographic printing press.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-3005 |
Date | 01 June 2017 |
Creators | Cox, Ryan Yinghua |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0019 seconds