The mountain pine beetle is associated with a diverse array of fungi. Grosmannia clavigera is the most pathogenic of these fungi. A comparison was made between two methods that have been used to assess fungal pathogenicity. Results were similar for older trees inoculated with G. clavigera using either the alternating flap technique or cork borer method. Using the cork borer method, younger lodgepole pine trees were inoculated with five different isolates of G. clavigera. After a 48 week incubation period, isolates ATCC 18086, B5 and H55 had induced stronger pathogenic indicators compared to isolates KW 1407 and B20. After a 7 week incubation period, only isolate ATCC 18086 had induced stronger pathogenic indicators. Usually, this isolate grew faster at lower temperatures and in a low oxygen environment. Isolate KW 1407 consistently produced milder pathogenic indicators during both incubation periods. Among the non-pathogenic fungal associates of the mountain pine beetle, Ceratocystiopsis minuta may be considered the most important because it is the type species for the genus Ceratocystiopsis. The history of this genus is complicated because no physical specimen exists for C. minuta. The phylogeny of the genus Ceratocystiopsis was evaluated. Many isolates of C. minuta were assessed as potential epitypes. Several isolates of C. minuta from previous work were shown to be misidentified. C. minuta isolate CBS 116796 is recommended for future genetic work within the genus Ceratocystiopsis. For morphological work, using measurements from the literature is recommended since CBS 116796 did not produce fruiting bodies.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU./345 |
Date | 05 1900 |
Creators | Plattner, Alex |
Publisher | University of British Columbia |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | 7825296 bytes, application/pdf |
Page generated in 0.0017 seconds