Return to search

Symmetric Presentations and Double Coset Enumeration

In this project, we demonstrate our discovery of original symmetric presentations and constructions of important groups, including nonabelian simple groups, and groups that have these as factor groups. The target nonabelian simple groups include alternating, linear, and sporadic groups. We give isomorphism types for each finite homomorphic image that has been found. We present original symmetric presentations of $M_{12}$, $M_{21}:(2 \times 2)$, $L_{3}(4):2^2$, $2:^{\cdot}L_{3}(4):2$, $S(4,3)$, and $S_{7}$ as homomorphism images of the progenitors $2^{*20}$ $:$ $A_{5}$, $2^{*10}$ $:$ $PGL(2,9)$, $2^{*10}$ $:$ $Aut(A_{6})$, $2^{*10}$ $:$ $A_{6}$, $2^{*10}$ $:$ $A_{5}$, and $2^{*24}$ $:$ $S_{5}$, respectively. We also construct $M_{12}$, $M_{21}:(2 \times 2)$, $L_{3}(4):2^2$, $L_{3}(4):2^2$, $2:^{\cdot}L_{3}(4):2$, $S(4,3)$, and $S_{7}$ over $A_{5}$, $PGL(2,9)$, $Aut(A_{6})$, $A_{6}$, $A_{5}$, and $S_{5}$, respectively, using our technique of double coset enumeration. All of the symmetric presentations given are original to the best of our knowledge.

Identiferoai:union.ndltd.org:csusb.edu/oai:scholarworks.lib.csusb.edu:etd-1872
Date01 December 2018
CreatorsSeager, Charles
PublisherCSUSB ScholarWorks
Source SetsCalifornia State University San Bernardino
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses, Projects, and Dissertations

Page generated in 0.002 seconds