Return to search

Manufacturing processes and materials selection for a sustainable future

This study focuses on different manufacturing processes and material choices for products that are designed to help the future to be more sustainable. These products were developed in a global project that explored the field and subfields of urban mining. This thesis is a part of that project and is meant to come with valuable input to the results. In this urban mining project two products were developed. The two different products that has been developed during this project is the NIX and the UM Factory. They work together with keeping material on the construction site when space is limited in order to reduce the transportation, both for the environmental benefit and also from a cost perspective. Together they will not only keep the material on the site but also refine them so they can be used again. This thesis will look into how these two products can be manufactured and what materials is a suitable choice for the products. These two factors were also thought about during the development of the products, both how to make it as simple design that was easy to produce while still fulfilling the requirements set. Also what materials might be a suitable choice for different parts of the products is considered, in order to be reliable, easy to work with, and relatively cheap. The study also explored some methods and materials that might be worth looking into in a few years. Methods and materials that today are undeveloped or not economically viable.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-1047
Date January 2015
CreatorsKågesson, Gustav, Tahir, Zainalabidin
PublisherBlekinge Tekniska Högskola, Institutionen för maskinteknik, Blekinge Tekniska Högskola, Institutionen för maskinteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds