Return to search

Left Orderable Residually Finite p-groups

Let p and q be distinct primes, and G an elementary amenable group that is a residually finite p-group and a residually finite q-group. We conjecture that such groups G are left orderable. In this paper we show some results which came as attempts to prove this conjecture. In particular we give a condition under which split extensions of residually finite p-groups are again residually finite p-groups. We also give an example which shows that even for elementary amenable groups, it is not sufficient for biorderablity that the group be a residually finite p-group and a residually finite q-group. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/24782
Date03 January 2014
CreatorsWithrow, Camron Michael
ContributorsMathematics, Linnell, Peter A., Ball, Joseph A., Brown, Ezra A.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.002 seconds