The goal of this work was to evaluate matrix acidizing treatments of vertical and horizontal wells in carbonate reservoirs. Twenty field cases for acidizing treatments were analyzed by evaluating the skin factor evolution from on-site rate/pressure data during the treatment.
A skin monitoring method based on the concept of inverse injectivity (Hill and Zhu, 1996) was used to calculate the skin factor evolution. Viscous diversion techniques were analyzed by using the viscous diversion skin model that accounts for viscosity contrast between the reservoir fluid and the injected fluid. The estimated skin evolution during the treatment was validated using the post-treatment well performance.
From the post-treatment analysis, it was observed that emulsified acid was not an efficient viscous diverter because only 27% of the wells treated with emulsified acid showed evidence of viscous diversion. Therefore, other viscous diversion techniques are needed to ensure uniform acid coverage. In addition, treatments that involved diversion techniques such as foam, associative-polymers, and viscoelastic surfactants were also evaluated. Thus, the post-treatment evaluation was used to improve and optimize the acid treatment designs. This study was beneficial to diagnose if excess acid volumes were used, or effective diversion was achieved during the acid treatment.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2012-05-10763 |
Date | 2012 May 1900 |
Creators | Pandya, Nimish |
Contributors | Zhu, Ding |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | thesis, text |
Format | application/pdf |
Page generated in 0.0024 seconds