Return to search

Spatial material interfaces

Thesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2017. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 135-139). / Tangible Interfaces allow us to utilize our natural propensity for kinesthetic manipulation to control digital computation and touch virtual information. As the technology advances, these interfaces are re-envisioned as programmable materials, able to emulate dynamic physical properties to provide material-based affordances. In this work, I review the motivation and a brief history of Tangible User Interfaces (TUIs) and examine the implications of the Radical Atoms vision for programmable Material User Interfaces (MUIs). I identify two current limitations to Radical Atoms in practice: 1) material rendering capability and 2) affordance prediction for general-purpose MUIs. I propose force-controlled material displays as a framework for future advancement in material property rendering. I also discuss the use of Al for contextual interaction recognition and introduce Spatial Behaviors as an alternative method to allow interfaces to infer appropriate interaction modes from their location in space. This thesis presents the context, motivation, framework, implementation, evaluation, and future roadmaps towards these visions. I present examples of each proposed paradigm, focusing on inFORCE, a force-controlled material display, and ReVeal, a spatial shape display for tangible rendering in Augmented and Virtual Reality. I analyze the technical performance of this system and assess the interface through user studies. Finally, I discuss potential applications of the current system, as well as limitations and premises for future development and improvement in the context of Radical Atoms. / by Daniel John Fitzgerald. / S.M.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/112535
Date January 2017
CreatorsFitzgerald, Daniel John, S.M. Massachusetts Institute of Technology
ContributorsHiroshi Ishii., Program in Media Arts and Sciences (Massachusetts Institute of Technology), Program in Media Arts and Sciences (Massachusetts Institute of Technology)
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format139 pages, application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0104 seconds