Vätgas är en energibärare som kan vara en av pusselbitarna i omställningen till en mer klimatneutral värld. Infrastrukturen byggs ut, industrin växer och vätgasfordon blir vanligare. Vätgas är ett ämne med de bra egenskaperna att det kan lagra kemisk energi och från förnybar el tillverkas med elektrolys, men det har också den riskabla egenskapen att det är mycket brandfarligt. Vid läckage av vätgas finns risken att en jetflamma med höga temperaturer uppstår vilket påverkar omgivningen där det sker. Standarder för jetbrandtester är idag baserade på tester med propan, men då vätgas har andra egenskaper behövs ökad kunskap för att minska riskerna vid olyckor. Studien syftar till att via litteraturstudier samla information om storskaliga jetbrandtester, vilken utrustning som används, hur material påverkas av jetflammor och vilka standarder som finns för jetflammor och jetbrandtester. Ett av syftena är också att med intervjustudie ta reda på hur räddningstjänsten i Luleå ser på utvecklingen av vätgasinfrastruktur och om de har några rutiner för olyckor med vätgas. Det finns en vision vid Luleå tekniska universitet att det i framtiden ska finnas en anläggning för att utföra jetbrandtester av vätgas och andra bränslen i Luleå. Studien syftar därför också till att via intervju ta reda på om räddningstjänsten i Luleå skulle ha någon användning för en sådan anläggning. Jetbrandtester kan enligt standarden SS-ISO 22899-1:2021 utföras i mindre skala med propan som bränsle och ändå ge liknande resultat som vid storskaliga jetbrandtester med naturgas. Jetbrandtestet utförs för att testa brandmotstånd genom integritet (E) och isolerande förmåga (I) för passiva brandskyddsmaterial som används till rör, paneler, konstruktionsstål och rör- och kabelgenomföringar. Testerna utförs enligt standarden med utrustning såsom munstycke, åter-cirkuleringskammare, skyddskammare, med mera. Enligt standarden SS-ISO 22899-1:2021 träffas testobjektet vid ett jetbrandtest med en jetflamma av propan på 1 meters avstånd. Det korta avståndet medför att propanet inte fullt hinner förbrännas vilket skapar temperaturskillnader på testobjektets yta när det träffas av flamman. Det bildas en ”kall” och en ”varm” zon på ytan där den ”kalla” zonen är den punkt som i direkt kontakt med jetflamman utsätts för mekanisk kraft i form av erosion. För vätgas hinner flamman stabilisera sig på en meters avstånd vilket gör att testobjektet träffas av en fullt utvecklad flamma och därför både utsätts för termiska laster i form av en enhetlig ”varm” zon och mekaniska laster i form av erosion. Denna skillnad kan göra att passiva brandskyddsmaterial vid jetflammor av vätgas inte klarar av att upprätthålla det krav på brandmotstånd som ställs. Detta är främst aktuellt att undersöka för reaktiva passiva brandskyddamaterial då de är mer känsliga för erosion än icke-reaktiva passiva brandskyddsmaterial. Om så är fallet att passiva brandskyddsmaterial inte klarar av att motstå jetflammor av vätgas lika bra som för propan kanske en standard för jetbrandtester med vätgas skulle behöva tas fram. Det kan vid intervjun med PärJohan Fredrickson som är sektionschef för myndighetsutövningen vid Luleå räddningstjänst konstateras att de verkar vara väl informerade om utvecklingen av vätgasinfrastrukturen och att de har varit delaktiga i vätgasfrågor sedan några år tillbaka. De har samarbeten med andra räddningstjänster och de försöker tidigt vara med i dialogen när nya processer och verksamheter utvecklas. De har i dagsläget inte några operativa övningar med jetflammor av vätgas men de arbetar förebyggande genom att ta fram insatsplaner tillsammans med de industriella verksamheter som hanterar vätgas. De kan från ett förebyggande perspektiv se hur räddningstjänsten kanske skulle kunna ha användning av en anläggning för att genomföra jetbrandtester med vätgas. Men om det finns något operativt behov behöver vidare utredas med personal på räddningstjänsten som arbetar inom de operativa resurserna. / Hydrogen is an energy-carrier that can be a piece in the change for a climate neutral world. The infrastructure and industry expand, and hydrogen vehicles becomes more common. Some good characteristics with hydrogen are that it from renewable energy can be produced through electrolysis and store chemical energy, but it also has the risky characteristic that its very flammable. If hydrogen gas would leak from a container there is the risk of a jet flame with high temperatures that can affect the surroundings. Today’s standards for jet fire testing are based on propane gas, but because hydrogen has so many different characteristics there might be a need for more knowledge to prevent risks and accidents. Through a literature study this report aims to gather information about large scale jet fire testing, what equipment that is used, how materials react to jet flames, and what standards that are current for jet fire testing and jet flames. A purpose is to through an interview-study figure out how the rescue service in Luleå sees on the development in hydrogen infrastructure and if they have any routines for accidents with hydrogen. Luleå University of Technology has a vision to in the future have a facility in Luleå where they can perform jet fire testing with hydrogen and other flammable fuels. One purpose of the study is therefore to interview the rescue service in Luleå to investigate if they would have any interest in such facility and what use they could have of it. According to the standard SS-ISO 22899-1:2021, jet fire tests with propane gas can be performed in a smaller scale and still give similar results as for large scale jet fire tests with natural gas. The jet fire test is performed to determine the fire resistance regarding integrity (E) and isolating capacity (I) for passive fire protection materials that are used for pipes, panels, structural steelwork, and pipe penetration seals. The gear that is used for the tests are a nozzle, flame re-circulation chamber, protective chamber etc. A propane flame hits the object of testing from 1 meter according to the standard. Because of the short distance, the propane flame does not reach full combustion which leads to a temperature difference on the object of testing that is encountered with the jet flame. A “cold” and “hot” zone is therefore created at the surface where the “cold” zone appears at the center core of the jet flame. At this core, the object of testing is exposed to a higher mechanical force in terms of erosion than other parts of the object. For hydrogen the jet flame stabilizes in 1 meter which changes how the flame affects the object of testing. The object is instead hit by a fully combusted jet flame that exposes it to high thermal load with a uniform “hot” zone and mechanical load of erosion. That difference could change how passive fire protection (PFP) materials are able to resist jet flames with hydrogen as the tests for PFP materials are done with propane. This would mainly be topical for reactive PFP materials as they are more sensitive to erosion than non-reactive PFP materials and a standard for jet fire tests with hydrogen may become relevant if PFP materials fail to maintain the requirements that are set for propane. The interview with section manager PärJohan Fredrickson that works at Luleå rescue service shows that Luleå rescue service seems to be well informed about the development of hydrogen infrastructure. Since a few years back they have been involved with questions relating to hydrogen, they have collaborations with other rescue services around the country and they try to get involved as early as possible when new processes and operations are formed. They do not seem to do any exercises where they train for jet fire accidents with hydrogen involved but they are working to prevent accidents with hydrogen. Action plans has been and are being developed together with the operations that are handling the hydrogen. The rescue service could from a preventive perspective have a use of a facility for jet fire testing with hydrogen. But it must be further investigated if there is an operative need to use such a facility.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-104849 |
Date | January 2024 |
Creators | Stridsberg, Nils |
Publisher | Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0061 seconds