Return to search

Fault Detection and Identification of Vehicle Starters and Alternators Using Machine Learning Techniques

Artificial Intelligence in Automotive Industry / Cost reduction is one of the main concerns in industry. Companies invest considerably for better performance in end-of-line fault diagnosis systems. A common strategy is to use data obtained from existing instrumentation. This research investigates the challenge of learning from historical data that have already been collected by companies. Machine learning is basically one of the most common and powerful techniques of artificial intelligence that can learn from data and identify fault features with no need for human interaction. In this research, labeled sound and vibration measurements are processed into fault signatures for vehicle starter motors and alternators. A fault detection and identification system has been developed to identify fault types for end-of-line testing of motors.
However, labels are relatively difficult to obtain, expensive, time consuming and require experienced humans, while unlabeled samples needs less effort to collect. Thus, learning from unlabeled data together with the guidance of few labels would be a better solution. Furthermore, in this research, learning from unlabeled data with absolutely no human intervention is also implemented and discussed as well. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/20649
Date January 2016
CreatorsSeddik, Essam
ContributorsHabibi, Saied, Mechanical Engineering
Source SetsMcMaster University
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds