Reliable geographic intelligence is essential for urban areas; land-cover classification creates the data for urban spatial decision making. This research tested a methodology to create a land-cover map for the main campus of Florida Atlantic University in Boca Raton, Florida. The accuracy of nine separate land-cover classification results were tested; the one with the highest accuracy was chosen for the final map. Object-based image segmentation was applied to fused and LiDAR point cloud (elevation and intensity) data and aerial imagery. These were classified by Random Forest, k-Nearest Neighbor and Support Vector Machines classifiers. Shadow features were reclassified hierarchically in order to create a complete map. The Random Forest classifier used with the fused data set gave the highest overall accuracy at 82.3%, and a Kappa value at 0.77. When combined with the results from the shadow reclassification, the overall accuracy increased to 86.3% and the Kappa value improved to 0.82. / Includes bibliography. / Thesis (M.A.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_33453 |
Contributors | Gamboa, Nicole (author), Zhang, Caiyun (Thesis advisor), Florida Atlantic University (Degree grantor), Charles E. Schmidt College of Science, Department of Geosciences |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Format | 76 p., application/pdf |
Rights | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0021 seconds