In this work, we prove three types of results with the strategy that, together, the author believes these should imply the local version of Hilbert's Fifth problem. In a separate development, we construct a nontrivial topology for rings of map germs on Euclidean spaces. First, we develop a framework for the theory of (local) nonstandard Lie groups and within that framework prove a nonstandard result that implies that a family of local Lie groups that converge in a pointwise sense must then differentiability converge, up to coordinate change, to an analytic local Lie group, see corollary 6.3.1. The second result essentially says that a pair of mappings that almost satisfy the properties defining a local Lie group must have a local Lie group nearby, see proposition 7.2.1. Pairing the above two results, we get the principal standard consequence of the above work which can be roughly described as follows. If we have pointwise equicontinuous family of mapping pairs (potential local Euclidean topological group structures), pointwise approximating a (possibly differentiably unbounded) family of differentiable (sufficiently approximate) almost groups, then the original family has, after appropriate coordinate change, a local Lie group as a limit point. (See corollary 7.2.1 for the exact statement.) The third set of results give nonstandard renditions of equicontinuity criteria for families of differentiable functions, see theorem 9.1.1. These results are critical in the proofs of the principal results of this paper as well as the standard interpretations of the main results here. Following this material, we have a long chapter constructing a Hausdorff topology on the ring of real valued map germs on Euclidean space. This topology has good properties with respect to convergence and composition. See the detailed introduction to this chapter for the motivation and description of this topology.
Identifer | oai:union.ndltd.org:RICE/oai:scholarship.rice.edu:1911/70349 |
Date | January 2011 |
Contributors | Hardt, Robert M. |
Source Sets | Rice University |
Language | English |
Detected Language | English |
Type | Thesis, Text |
Format | 226 p., application/pdf |
Page generated in 0.0059 seconds