Return to search

A novel theranostic strategy for MMP-14 expressing glioblastomas impacts survival

Yes / Glioblastoma (GBM) has a dismal prognosis. Evidence from preclinical tumor models and human trials indicates the role of GBM initiating cells (GIC) in GBM drug resistance. Here, we propose a new treatment option with tumor enzyme-activatable, combined therapeutic and diagnostic (theranostic) nanoparticles, which caused specific toxicity against GBM tumor cells and GICs. The theranostic cross-linked iron oxide nanoparticles (CLIO) were conjugated to a highly potent vascular disrupting agent (ICT) and secured with a matrix-metalloproteinase (MMP-14) cleavable peptide. Treatment with CLIO-ICT disrupted tumor vasculature of MMP-14 expressing GBM, induced GIC apoptosis and significantly impaired tumor growth. In addition, the iron core of CLIO-ICT enabled in vivo drug tracking with MR imaging. Treatment with CLIO-ICT plus temozolomide achieved tumor remission and significantly increased survival of human GBM bearing mice by more than 2 fold compared to treatment with temozolomide alone. Thus, we present a novel therapeutic strategy with significant impact on survival and great potential for clinical translation. / Heike E Daldrup-Link, NIH, R21CA176519 and R21CA190196; Sanjiv Sam Gambhir, NIH, 1U54CA199075; Jessica Klockow, NCI training grant, T32CA118681, Robert A. Falconer, University of Bradford, UoB-66031

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/12440
Date28 June 2017
CreatorsMohanty, S., Chen, Z., Li, K., Ribeiro Morais, Goreti, Klockow, J., Yerneni, K., Pasani, L., Chin, F.T., Mitra, S., Cheshier, S., Chang, E., Gambhir, S.S., Rao, J., Loadman, Paul, Falconer, Robert A., Daldrup-Link, H.E.
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, Accepted manuscript
Rights© 2017 American Association for Cancer Research. Reproduced in accordance with the publisher's self-archiving policy., Unspecified

Page generated in 0.0023 seconds