The primary purpose of the current research was to implement a numerical model to investigate the interactions between the energy consumption in Heating, Ventilating, and Air Conditioning (HVAC) systems and occupants’ thermal comfort in commercial buildings. A numerical model was developed to perform a thermal analysis of a single zone and simultaneously investigate its occupants’ thermal sensations as a non-linear function of the thermal environmental (i.e. temperature, thermal radiation, humidity, and air speed) and personal factors (i.e. activity and clothing). The zone thermal analyses and thermal comfort calculations were carried out by applying the heat balance method and current thermal comfort standard (ASHRAE STANDARD 55-2004) respectively.
The model was then validated and applied on a single generic zone, representing the perimeter office spaces of the Centre for Interactive Research on Sustainability (CIRS), to investigate the impacts of variation in occupants’ behaviors, building’s envelope, HVAC system, and climate on both energy consumption and thermal comfort. Regarding the large number of parameters involved, the initial summer and winter screening analyses were carried out to determine the measures that their impacts on the energy and/or thermal comfort were most significant. These analyses showed that, without any incremental cost, the energy consumption in both new and existing buildings may significantly be reduced with a broader range of setpoints, adaptive clothing for the occupants, and higher air exchange rate over the cooling season.
The effects of these measures as well as their combination on the zone thermal performance were then studied in more detail with the whole year analyses. These analyses suggest that with the modest increase in the averaged occupants’ thermal dissatisfaction, the combination scenario can notably reduce the total annual energy consumption of the baseline zone.
Considering the global warming and the life of a building, the impacts of climate change on the whole year modeling results were also investigated for the year 2050. According to these analyses, global warming reduced the energy consumption for both the baseline and combination scenario, thanks to the moderate and cold climate of Vancouver.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU./597 |
Date | 05 1900 |
Creators | Taghi Nazari, Alireza |
Publisher | University of British Columbia |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | 1556382 bytes, application/pdf |
Page generated in 0.0018 seconds