Return to search

Temperature proton exchange membrane fuel cells in a serpentine design

<p>The aim of my work is to model a segment of a unit cell of a fuel cell stack using numerical methods which is classified as computational fluid dynamics and implementing the work in a commercial computational fluid dynamics package, FLUENT. The focus of my work is to study the thermal distribution within this segment. The results of the work aid in a better understanding of the fuel cell operation in this temperature range. At the time of my investigation experimental results were unavailable for validation and therefore my results are compared to previously published results published. The outcome of the results corresponds to this, where the current flux density increases with the increasing of operating temperature and fixed operating voltage and the temperature variation across the fuel cell at varying operating voltages. It is in the anticipation of determining actual and or unique material input parameters that this work is done and at which point this studies results would contribute to the understanding high temperature PEM fuel cell thermal behaviour, significantly.</p>

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uwc/oai:UWC_ETD:http%3A%2F%2Fetd.uwc.ac.za%2Findex.php%3Fmodule%3Detd%26action%3Dviewtitle%26id%3Dgen8Srv25Nme4_1316_1307961639
Date January 2010
CreatorsMaasdorp, Lynndle Caroline
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis and dissertation
FormatPdf
CoverageZA
RightsCopyright: University of the Western Cape

Page generated in 0.0025 seconds