Return to search

On the PEEK Composites Reinforced by Surface-Modified Nano-Silica

In this study, PEEK/SiO2 nanocomposites were fabricated by means of simple compression molding technique. The performances and properties of the resulting PEEK nanocomposites were examined in terms of tensile loading, hardness, dynamic mechanical analysis (DMA), thermal mechanical analysis (TMA), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicated that the modified nanosilica was seen to disperse more uniformly than the unmodified counterparty. The XRD patterns of the modified-silica filled PEEK composites reveal a systematic shift toward higher angles, suggesting the smaller d-spacing of the PEEK crystallites. As for the thermal properties of the resulting PEEK nanocomposites, there is no significant difference for the melting and crystallization temperatures, as well as the degree of crystallization between the modified and unmodified silica filled PEEK nanocomposites. The TMA results show that the coefficient of thermal expansion (CTE) becomes lowered when the content of the nanosilica increases. Furthermore, the CTE of the modified-silica filled PEEK nanocomposites shows the higher CTE values, as compared with those of the unmodified counterparts. In addition, the inclusion of the nanosilica could improve the microhardness and the stiffness of the resulting PEEK nanocomposites with the sacrifice of the elongation, as evident from the tension and DMA testing.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0727106-113435
Date27 July 2006
CreatorsLai, Yen-Huei
ContributorsMing Chen, Shian-Ching Jang, Chih-Ching Huang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0727106-113435
Rightsoff_campus_withheld, Copyright information available at source archive

Page generated in 0.0023 seconds