A graphite foam was developed at Oak Ridge National Laboratory (ORNL) by Dr. James Klett and license was granted to POCO Graphite, Inc. to manufacture and market the product as PocoFoam. Unlike many processes currently used to manufacture carbon foams, this process yields a highly graphitic structure and overcomes many limitations, such as oxidation stabilization, that are routinely encountered in the development of carbon foam materials. The structure, thermal properties, electrical resistivity, isotropy, and density uniformity of PocoFoam were evaluated. These properties and characteristics of PocoFoam are compared with natural and synthetic graphite in order to show that, albeit similar, it is unique. Thermal diffusivity and thermal conductivity were derived from Fourier's energy equation. It was determined that PocoFoam has the equivalent thermal conductivity of metals routinely used as heat sinks and that thermal diffusivity is as much as four times greater than pure copper and pure aluminum. SEM and XRD results indicate that PocoFoam has a high degree of crystalline alignment and near theoretical d spacing that is more typical of natural flake graphite than synthetic graphite. PocoFoam is anisotropic, indicating an isotropy factor of 0.5, and may yield higher thermal conductivity at cryogenic temperatures than is observed in polycrystalline graphite.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc2836 |
Date | 08 1900 |
Creators | Morgan, Dwayne Russell |
Contributors | Reidy, Richard, Brostow, Witold, 1934-, D'Souza, Nandika A., Gnade, Bruce |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Use restricted to UNT Community, Copyright, Morgan, Dwayne Russell, Copyright is held by the author, unless otherwise noted. All rights reserved. |
Page generated in 0.0024 seconds