abstract: Limited access to clean water due to natural or municipal disasters, drought, or contaminated wells is driving demand for point-of-use and humanitarian drinking water technologies. Atmospheric water capture (AWC) can provide water off the centralized grid by capturing water vapor in ambient air and condensing it to a liquid. The overarching goal of this dissertation was to define geographic and thermodynamic design boundary conditions for AWC and develop nanotechnology-enabled AWC technologies to produce clean drinking water.
Widespread application of AWC is currently limited because water production, energy requirement, best technology, and water quality are not parameterized. I developed a geospatial climatic model for classical passive solar desiccant-driven AWC, where water vapor is adsorbed onto a desiccant bed at night, desorbed by solar heat during the day, and condensed. I concluded passive systems can capture 0.25–8 L/m2/day as a function of material properties and climate, and are limited because they only operate one adsorption-desorption-condensation cycle per day. I developed a thermodynamic model for large-scale AWC systems and concluded that the thermodynamic limit for energy to saturate and condense water vapor can vary up to 2-fold as a function of climate and mode of saturation.
Thermodynamic and geospatial models indicate opportunity space to develop AWC technologies for arid regions where solar radiation is abundant. I synthesized photothermal desiccants by optimizing surface loading of carbon black nanoparticles on micron-sized silica gel desiccants (CB-SiO2). Surface temperature of CB-SiO2 increased to 60oC under solar radiation and water vapor desorption rate was 4-fold faster than bare silica. CB-SiO2 could operate >10 AWC cycles per day to produce 2.5 L/m2/day at 40% relative humidity, 3-fold more water than a conventional passive system.
Models and bench-scale experiments were paired with pilot-scale experiments operating electrical desiccant and compressor dehumidifiers outdoors in a semi-arid climate to benchmark temporal water production, water quality and energy efficiency. Water quality varied temporally, e.g, dissolved organic carbon concentration was 3 – 12 mg/L in the summer and <1 mg/L in the winter. Collected water from desiccant systems met all Environmental Protection Agency standards, while compressor systems may require further purification for metals and turbidity. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2020
Identifer | oai:union.ndltd.org:asu.edu/item:57016 |
Date | January 2020 |
Contributors | Mulchandani, Anjali (Author), Westerhoff, Paul (Advisor), Rittmann, Bruce (Committee member), Alvarez, Pedro (Committee member), Herckes, Pierre (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 232 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0025 seconds