Return to search

Thermodynamic Properties of CO2 Mixtures and Their Applications in Advanced Power Cycles with CO2 Capture Processes

The thermodynamic properties of CO2-mixtures are essential for the design and operation of CO2 Capture and Storage (CCS) systems. A better understanding of the thermodynamic properties of CO2 mixtures could provide a scientific basis to define a proper guideline of CO2 purity and impure components for the CCS processes according to technical, safety and environmental requirements. However the available accurate experimental data cannot cover the whole operation conditions of CCS processes. In order to overcome the shortage of experimental data, theoretical estimation and modelling are used as a supplemental approach.   In this thesis, the available experimental data on the thermodynamic properties of CO2 mixtures were first collected, and their applicability and gaps for theoretical model verification and calibration were also determined according to the required thermodynamic properties and operation conditions of CCS. Then in order to provide recommendations concerning calculation methods for engineering design of CCS, totally eight equations of state (EOS) were evaluated for the calculations about vapour liquid equilibrium (VLE) and density of CO2-mixtures, including N2, O2, SO2, Ar, H2S and CH4.   With the identified equations of state, the preliminary assessment of impurity impacts was further conducted regarding the thermodynamic properties of CO2-mixtures and different processes involved in CCS system. Results show that the increment of the mole fraction of non-condensable gases would make purification, compression and condensation more difficult. Comparatively N2 can be separated more easily from the CO2-mixtures than O2 and Ar. And a lower CO2 recovery rate is expected for the physical separation of CO2/N2 under the same separation conditions. In addition, the evaluations about the acceptable concentration of non-condensable impurities show that the transport conditions in vessels are more sensitive to the non-condensable impurities and it requires very low concentration of non-condensable impurities in order to avoid two-phase problems.   Meanwhile, the performances of evaporative gas turbine integrated with different CO2 capture technologies were investigated from both technical and economical aspects. It is concluded that the evaporative gas turbine (EvGT) cycle with chemical absorption capture has a smaller penalty on electrical efficiency, while a lower CO2 capture ratio than the EvGT cycle with O2/CO2 recycle combustion capture. Therefore, although EvGT + chemical absorption has a higher annual cost, it has a lower cost of electricity because of its higher efficiency. However considering its lower CO2 capture ratio, EvGT + chemical absorption has a higher cost to avoid 1 ton CO2. In addition the efficiency of EvGT + chemical absorption can be increased by optimizing Water/Air ratio, increasing the operating pressure of stripper and adding a flue gas condenser condensing out the excessive water. / QC 20100819

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-9109
Date January 2008
CreatorsLi, Hailong
PublisherKTH, Energiprocesser, Stockholm : KTH
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-CHE-Report, 1654-1081 ; 2008:58

Page generated in 0.0031 seconds