Return to search

Stochastic Finite Element Method for the Modeling of Thermoelastic Damping in Micro-Resonators

Abstract
Micro-electromechanical systems (MEMS) are subject to inevitable and inherent uncertainties in their dimensional and material parameters. Those lead to variability in their performance and reliability. Manufacturing processes leave substantial variability in the shape and geometry of the device due to its small dimensions and high feature complexity, while the material properties of a component are inherently subject to scattering. The effects of these variations have to be considered and a modeling methodology is needed in order to ensure required MEMS performance under uncertainties.
Furthermore, in the design of high-Q micro-resonators, dissipation mechanisms may have detrimental effects on the quality factor (Q). One of the major dissipation phenomena to consider is thermoelastic damping, so that performances are directly related to the thermoelastic quality factor, which has to be predicted accurately.
The purpose of this research is to develop a numerical method to analyze the effects of geometric and material property random variations on the thermoelastic quality factor of micro-resonators. The extension of the Perturbation Stochastic Finite Element Method (PSFEM) to the analysis of strongly coupled multiphysic phenomena allows the quantification of the influence of uncertainties, making available a new efficient numerical tool to MEMS designers.
Résumé
Dans le domaine des microsystèmes électromécaniques (MEMS), les micro-résonateurs jouent un rôle important pour le développement de micro-capteurs de plus en plus précis (ex : micro-accéléromètres). Dans cette optique daugmentation de la précision, les pertes dénergie qui limitent les performances des micro-résonateurs doivent être identifiées et quantifiées. Le facteur limitant des micro-résonateurs actuels est leur facteur de qualité thermo-élastique, qui doit donc être prédit de manière précise.
De plus, suite à la tendance actuelle de miniaturisation et complexification accrues des MEMS, les sources de dispersions sont très nombreuses, à la fois sur les constantes physiques des matériaux utilisés et sur les paramètres géométriques. La mise au point doutils numériques permettant de prendre en compte les incertitudes de manière efficace est donc primordiale afin daméliorer les prestations densemble du microsystème et dassurer un certain niveau de robustesse et de fiabilité.
Le but de cette recherche est de développer une méthode numérique pour analyser les effets des variations aléatoires des propriétés matérielles et géométriques sur le facteur de qualité thermo-élastique de micro-résonateurs. Pour ce faire, lapproche dite perturbative de la méthode des éléments finis stochastiques (PSFEM) est étendue à lanalyse de phénomènes multiphysiques fortement couplés, fournissant ainsi aux acteurs de lindustrie des MEMS un nouvel outil de conception efficace.

Identiferoai:union.ndltd.org:BICfB/oai:ETDULg:ULgetd-06012007-171848
Date16 March 2007
CreatorsLepage, Séverine
ContributorsSchueller, G.I., Klapka, I, Le Traon, O, Coyette, J-P, Kerschen, Gaetan, Ponthot, Jean-Philippe, Golinval, Jean-Claude, Beckers, Pierre
PublisherUniversite de Liege
Source SetsBibliothèque interuniversitaire de la Communauté française de Belgique
Detected LanguageFrench
Typetext
Formatapplication/pdf
Sourcehttp://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-06012007-171848/
Rightsunrestricted, Je certifie avoir complété et signé le contrat BICTEL/e remis par le gestionnaire facultaire.

Page generated in 0.0021 seconds