Return to search

The thermoelectric efficiency of quantum dots in indium arsenide/indium phosphide nanowires

xi, 193 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / State of the art semiconductor materials engineering provides the possibility to fabricate devices on the lower end of the mesoscopic scale and confine only a handful of electrons to a region of space. When the thermal energy is reduced below the energetic quantum level spacing, the confined electrons assume energy levels akin to the core-shell structure of natural atoms. Such "artificial atoms", also known as quantum dots, can be loaded with electrons, one-by-one, and subsequently unloaded using source and drain electrical contacts. As such, quantum dots are uniquely tunable platforms for performing quantum transport and quantum control experiments. Voltage-biased electron transport through quantum dots has been studied extensively. Far less attention has been given to thermoelectric effects in quantum dots, that is, electron transport induced by a temperature gradient.

This dissertation focuses on the efficiency of direct thermal-to-electric energy conversion in InAs/InP quantum dots embedded in nanowires. The efficiency of thermoelectric heat engines is bounded by the same maximum efficiency as cyclic heat engines; namely, by Carnot efficiency. The efficiency of bulk thermoelectric materials suffers from their inability to transport charge carriers selectively based on energy. Owing to their three-dimensional momentum quantization, quantum dots operate as electron energy filters--a property which can be harnessed to minimize entropy production and therefore maximize efficiency. This research was motivated by the possibility to realize experimentally a thermodynamic heat engine operating with near-Carnot efficiency using the unique behavior of quantum dots.

To this end, a microscopic heating scheme for the application of a temperature difference across a quantum dot was developed in conjunction with a novel quantum-dot thermometry technique used for quantifying the magnitude of the applied temperature difference. While pursuing high-efficiency thermoelectric performance, many mesoscopic thermoelectric effects were observed and studied, including Coulomb-blockade thermovoltage oscillations, thermoelectric power generation, and strong nonlinear behavior. In the end, a quantum-dot-based thermoelectric heat engine was achieved and demonstrated an electronic efficiency of up to 95% Carnot efficiency. / Committee in charge: Stephen Kevan, Chairperson, Physics;
Heiner Linke, Member, Physics;
Roger Haydock, Member, Physics;
Stephen Hsu, Member, Physics;
David Johnson, Outside Member, Chemistry

Identiferoai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/10552
Date12 1900
CreatorsHoffmann, Eric A., 1982-
PublisherUniversity of Oregon
Source SetsUniversity of Oregon
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationUniversity of Oregon theses, Dept. of Physics, Ph. D., 2009;

Page generated in 0.005 seconds