abstract: Waste heat energy conversion remains an inviting subject for research, given the renewed emphasis on energy efficiency and carbon emissions reduction. Solid-state thermoelectric devices have been widely investigated, but their practical application remains challenging because of cost and the inability to fabricate them in geometries that are easily compatible with heat sources. An intriguing alternative to solid-state thermoelectric devices is thermogalvanic cells, which include a generally liquid electrolyte that permits the transport of ions. Thermogalvanic cells have long been known in the electrochemistry community, but have not received much attention from the thermal transport community. This is surprising given that their performance is highly dependent on controlling both thermal and mass (ionic) transport. This research will focus on a research project, which is an interdisciplinary collaboration between mechanical engineering (i.e. thermal transport) and chemistry, and is a largely experimental effort aimed at improving fundamental understanding of thermogalvanic systems. The first part will discuss how a simple utilization of natural convection within the cell doubles the maximum power output of the cell. In the second part of the research, some of the results from the previous part will be applied in a feasibility study of incorporating thermogalvanic waste heat recovery systems into automobiles. Finally, a new approach to enhance Seebeck coefficient by tuning the configurational entropy of a mixed-ligand complex formation of copper sulfate aqueous electrolytes will be presented. Ultimately, a summary of these results as well as possible future work that can be formed from these efforts is discussed. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2015
Identifer | oai:union.ndltd.org:asu.edu/item:36384 |
Date | January 2015 |
Contributors | Gunawan, Andrey (Author), Phelan, Patrick E (Advisor), Buttry, Daniel A (Committee member), Mujica, Vladimiro (Committee member), Chan, Candace K (Committee member), Wang, Robert Y (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 129 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0019 seconds