Return to search

Design, development and testing of an automated system for measuring wall thicknesses in turbine blades with cooling channels

Cooling channels are designed in blades to protect the blades from damage at high temperature in a gas turbine. ELE Advanced Technology Ltd. is a UK company specialised in machining cooling channels in turbine blades using electro-chemical techniques. The wall thicknesses between these cooling channels and the surface of the turbine blade influences the performance of cooling channels and are required to be accurately machined and then inspected. At present, the company measures the wall thicknesses using a hand-held contact ultrasonic probe, which is time-consuming and not very accurate. In this project, an inspection machine has been designed and built for the purpose of automating the procedure of measuring wall thicknesses in turbine blades. The inspection machine measures wall thicknesses based on immersion ultrasonic testing technique and the actuator is a six-axis industrial robot controlled by a computer. Control algorithms have been developed to automate the entire measuring process. Acquired ultrasonic data is also automatically processed using Matlab scripts for wall thickness evaluation. However, prior to the ultrasonic measurement, the probe path has to be calculated. Matlab script has been developed to automatically calculate a probe path using a point cloud of the blade digitized on a CMM as an input. The calculation of the probe path, in general, involves triangulation, parameterisation and B-spline surface approximation. Normal 3D triangulation methods were tested; nevertheless, the results were unsatisfactory. Therefore, a triangulation algorithm is developed based on B-spline curve and 2D Delaunay triangulation. After the probe path is calculated, a localisation method, based on iterative closest point algorithm, is implemented to transform the probe path from CMM to the inspection machine. Several experiments were designed and conducted to study the capability of the ultrasonic probe. Experimental results confirmed the feasibility of using an immersion ultrasonic probe for measuring the wall thicknesses; however, the experiments revealed several limitations of immersion ultrasonic testing, such as the angle of incidence of ultrasonic waves must be maintained within an angular deviation of ±1° from the surface normal to achieve accurate test results. Wall thicknesses of three turbine blades from one batch were measured on the inspection machine. A CT scan image was used as reference to compare the measured wall thicknesses with results obtained using contact probes. The comparison showed the wall thicknesses measured on the inspection machine were much more accurate than using contact probes.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:727920
Date January 2016
CreatorsJiang, Zhengyi
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/design-development-and-testing-of-an-automated-system-for-measuring-wall-thicknesses-in-turbine-blades-with-cooling-channels(895ac153-e310-40e2-87c6-4e40654c9d5d).html

Page generated in 0.2893 seconds