Yes / Web of Things (WoT) can be considered as a merger of newly emerging paradigms of Internet of Things (IoT) and cloud computing. Rapidly varying, highly volatile and heterogeneous data traffic is a characteristic of the WoT. Hence, the capture, processing, storage and exchange of huge volumes of data is a key requirement in this environment. The crucial resources in the WoT are the sensing devices and the sensing data. Consequently, access control mechanisms employed in this highly dynamic and demanding environment need to be enhanced so as to reduce the end-to-end latency for capturing and exchanging data pertaining to these underlying resources. While there are many previous studies comparing the advantages and disadvantages of access control mechanisms at the algorithm level, vary few of these provide any detailed comparison the performance of these access control mechanisms when used for different data handling procedures in the context of data capture, processing and storage. This study builds on previous work on token-based access control mechanisms and presents a comparison of two different approaches used for handling sensing devices and data in the WoT. It is shown that the aggregated data submission approach is around 700% more efficient than the serial payload submission procedure in reducing the round-trip response time.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/11131 |
Date | 26 October 2015 |
Creators | Amir, Mohammad, Pillai, Prashant, Hu, Yim Fun |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Conference paper, Accepted manuscript |
Rights | © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works., Unspecified |
Page generated in 0.0018 seconds