Return to search

Pathophysiological and Histomorphological Effects of One-Lung Ventilation in the Porcine Lung

Thoracic surgical procedures require partial or complete airway separation and the opportunity to exclude one lung from ventilation (one-lung ventilation, OLV). OLV is commonly associated with profound pathophysiological changes that may affect the postoperative outcome. It is injurious in terms of increased mechanical stress including alveolar cell stretch and overdistension, shear forces secondary to repeated tidal collapse and reopening of alveolar units and compression of alveolar vessels. Ventilation and perfusion distribution may thus be affected during and after OLV. The present studies investigated the influence of OLV on ventilation and perfusion distribution, on the gas/tissue distribution and on the lung histomorphology in a pig model of thoracic surgery. Anaesthetised and mechanically ventilated piglets were examined. The ventilation and perfusion distribution within the lungs was assessed by single photon emission computed tomography. Computed tomography was used to establish the effects of OLV on dependent lung gas/tissue distribution. The pulmonary histopathology of pigs undergoing OLV and thoracic surgery was compared with that of two-lung ventilation (TLV) and spontaneous breathing. OLV induced hyperperfusion and significant V/Q mismatch in the ventilated lung persistent in the postoperative course. It increased cyclic tidal recruitment that was associated with a persistent increase of gas content in the ventilated lung. OLV and thoracic surgery as well resulted in alveolar damage.  In the present model of OLV and thoracic surgery, alveolar recruitment manoeuvre (ARM) and protective ventilation approach using low tidal volume preserved the ventilated lung density distribution and did not aggravate cyclic recruitment of alveoli in the ventilated lung. In conclusion, the present model established significant alveolar damage in response to OLV and thoracic surgery. Lung injury could be related to the profound pathophysiological consequences of OLV including hyperperfusion, ventilation/perfusion mismatch and increased tidal recruitment of lung tissue in the dependent, ventilated lung.  These mechanisms may contribute to the increased susceptibility for respiratory complications in patients undergoing thoracic surgery. A protective approach including sufficient ARM, application of PEEP, and the use of lower tidal volumes may prevent the ventilated lung from deleterious consequences of OLV.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-108850
Date January 2009
CreatorsKozian, Alf
PublisherUppsala universitet, Klinisk fysiologi, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 493

Page generated in 0.1547 seconds