The ACME collaboration aims to measure the eEDM via Ramsey spectroscopy of a cryogenic beam of ThO molecules in their metastable H state. This thesis describes the launch of this new experimental effort. A set of diode lasers has been built to address all the necessary ThO transitions. The laser frequencies were stabilized to a stable reference laser via a \(Fabry-P\acute{e}rot\) transfer cavity. A measurement of the magnetic dipole moment of the H state has been performed that is complementary to a previous measurement by the collaboration. This value is important for determining the sensitivity of the H state to magnetic fields, which can be a source of noise and systematic errors in the eEDM measurement. Experimental efforts to prepare the coherent superposition of the \(M = \pm1\) Zeeman sublevels in the H,J = 1 state that is the starting point of the eEDM experiment using transitions to the G state resulted in a better understanding of transitions between \(\Omega\)-doublet states in an electric field. This led to a new technique for normalizing out shot-to-shot fluctuations in the molecular beam flux, which has also been demonstrated experimentally. / Physics
Identifer | oai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/10121983 |
Date | 02 January 2013 |
Creators | Gurevich, Yulia |
Contributors | Gabrielse, Gerald |
Publisher | Harvard University |
Source Sets | Harvard University |
Language | en_US |
Detected Language | English |
Type | Thesis or Dissertation |
Rights | open |
Page generated in 0.0017 seconds